Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在模板和搜索区域之间学习强大的功能匹配对于3D暹罗跟踪至关重要。暹罗功能匹配的核心是如何在模板和搜索区域之间的相应点上分配高特征相似性,以进行精确的对象本地化。在本文中,我们提出了一个新颖的点云登记驱动的暹罗跟踪框架,直觉是空间对齐相应点(通过3D注册)倾向于实现一致的特征表示。具体而言,我们的方法由两个模块组成,包括特定于特定的非局部注册模块和一个注册辅助的sindhorn模板 - 特征聚合模块。登记模块在模板和搜索区域之间的精确空间对齐中进行目标。提出了跟踪特异性的空间距离约束,以优化非局部模块中的交叉注意权重,以进行判别特征学习。然后,我们使用加权SVD来计算模板和搜索区域之间的刚性转换,并对齐它们以实现所需的空间对齐相应点。对于特征聚合模型,我们将转换模板和搜索区域之间的特征匹配作为最佳传输问题,并利用Sinkhorn优化来搜索异常型匹配匹配解决方案。同样,建造了登记辅助空间距离图,以改善无法区分的区域(例如光滑的表面)的匹配鲁棒性。最后,在获得的功能匹配地图的指导下,我们将目标信息从模板中汇总到搜索区域中以构建特定于目标的特征,然后将其馈送到一个类似中心点的检测头中以进行对象定位。关于Kitti,Nuscenes和Waymo数据集的广泛实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
机器人超声(US)成像旨在克服美国自由企业考试的一些局限性,例如难以保证操作员可重复性。然而,由于患者之间的解剖学和生理变化以及解剖下结构的相对运动,富有鲁棒性产生最佳轨迹以检查感兴趣的解剖学时,当他们构成明确的关节时,这是一项挑战。为了应对这一挑战,本文提出了一种基于视觉的方法,允许自动机器人美国肢体扫描。为此,使用带注释的血管结构的人臂的Atlas MRI模板用于生成轨迹并注册并将其投射到患者的皮肤表面上,以进行机器人的美国获得。为了有效地细分并准确地重建目标的3D容器,我们通过将通道注意模块纳入U-NET型神经网络中,利用连续美国框架中的空间连续性。自动轨迹生成方法对具有各种铰接关节角度的六名志愿者进行评估。在所有情况下,该系统都可以成功地获取志愿者四肢上计划的血管结构。对于一名志愿者,还提供了MRI扫描,可以评估美国图像中扫描动脉的平均半径,从而导致半径估计($ 1.2 \ pm0.05〜mm $)可与MRI地面真相相当($ 1.2 \ $ $) PM0.04〜mm $)。
translated by 谷歌翻译
无监督的域对点云语义分割的适应性引起了极大的关注,因为它在没有标记的数据中学习有效性。大多数现有方法都使用全局级特征对齐方式将知识从源域转移到目标域,这可能会导致特征空间的语义歧义。在本文中,我们提出了一个基于图形的框架,以探索两个域之间的局部特征对齐,可以在适应过程中保留语义歧视。具体而言,为了提取本地级特征,我们首先在两个域上动态构建本地特征图,并使用来自源域的图形构建存储库。特别是,我们使用最佳传输来生成图形匹配对。然后,基于分配矩阵,我们可以将两个域之间的特征分布与基于图的本地特征损失对齐。此外,我们考虑了不同类别的特征之间的相关性,并制定了类别引导的对比损失,以指导分割模型以学习目标域上的区分特征。对不同的合成到现实和真实域的适应情景进行了广泛的实验表明,我们的方法可以实现最先进的性能。
translated by 谷歌翻译
对比学习在图表学习领域表现出了巨大的希望。通过手动构建正/负样本,大多数图对比度学习方法依赖于基于矢量内部产品的相似性度量标准来区分图形表示样品。但是,手工制作的样品构建(例如,图表的节点或边缘的扰动)可能无法有效捕获图形的固有局部结构。同样,基于矢量内部产品的相似性度量标准无法完全利用图形的局部结构来表征图差。为此,在本文中,我们提出了一种基于自适应子图生成的新型对比度学习框架,以实现有效且强大的自我监督图表示学习,并且最佳传输距离被用作子绘图之间的相似性度量。它的目的是通过捕获图的固有结构来生成对比样品,并根据子图的特征和结构同时区分样品。具体而言,对于每个中心节点,通过自适应学习关系权重与相应邻域的节点,我们首先开发一个网络来生成插值子图。然后,我们分别构建来自相同和不同节点的子图的正和负对。最后,我们采用两种类型的最佳运输距离(即Wasserstein距离和Gromov-Wasserstein距离)来构建结构化的对比损失。基准数据集上的广泛节点分类实验验证了我们的图形对比学习方法的有效性。
translated by 谷歌翻译
基于暹罗网络的跟踪器将3D单一对象跟踪作为模板和搜索区域的点特征之间的互相关学习。由于跟踪过程中模板和搜索区域之间的外观差异很大,因此如何学习它们之间的稳健跨相关性以识别搜索区域中的潜在目标仍然是一个挑战性的问题。在本文中,我们明确使用变压器形成一个3D Siamese变压器网络,以学习模板和点云的搜索区域之间的强大互相关。具体来说,我们开发了一个暹罗点变压器网络,以了解目标的形状上下文信息。它的编码器使用自我注意力来捕获点云的非本地信息来表征对象的形状信息,而解码器则利用交叉注意来提取歧视点特征。之后,我们开发了一个迭代的粗到加密相关网络,以了解模板与搜索区域之间的稳健跨相关性。它通过交叉注意将模板与搜索区域中的潜在目标联系起来,制定了交叉功能的增强。为了进一步增强潜在目标,它采用了自我功能增强,该增强功能将自我注意力应用于特征空间的本地K-NN图来汇总目标特征。 Kitti,Nuscenes和Waymo数据集的实验表明,我们的方法在3D单一对象跟踪任务上实现了最先进的性能。
translated by 谷歌翻译
现有的自我监督的单眼估计方法可以摆脱昂贵的注释并获得令人鼓舞的结果。但是,当直接采用接受固定分辨率训练的模型以评估其他不同决议时,这些方法会遭受严重的性能降解。在本文中,我们通过学习场景深度的规模不变性,提出了一个分辨率自适应自我监督的单眼估计方法(RA-DEPTH)。具体而言,我们提出了一种简单而有效的数据增强方法,以生成具有任意尺度的同一场景的图像。然后,我们开发了一个双重高分辨率网络,该网络使用具有密集交互的多路径编码器和解码器来汇总多尺度特征,以进行准确的深度推理。最后,为了明确了解场景深度的规模不变性,我们在具有不同尺度的深度预测上制定了跨尺度的深度一致性损失。对Kitti,Make3D和NYU-V2数据集进行了广泛的实验表明,RA-DEPTH不仅可以实现最新的性能,而且还表现出很好的解决能力。
translated by 谷歌翻译
由于其在多个工业应用领域的竞争性能,深度学习在我们的日常生活中起着越来越重要的作用。作为基于DL的系统的核心,深度神经网络会自动从精心收集和有组织的培训数据中学习知识,以获得预测看不见数据的标签的能力。与需要全面测试的传统软件系统类似,还需要仔细评估DNN,以确保受过训练的模型的质量满足需求。实际上,评估行业中DNN质量的事实上的标准是检查其在收集的标记测试数据集中的性能(准确性)。但是,准备这样的标记数据通常不容易部分,部分原因是标签工作巨大,即数据标记是劳动密集型的,尤其是每天有大量新的新传入的未标记数据。最近的研究表明,DNN的测试选择是一个有希望的方向,可以通过选择最小的代表性数据来标记并使用这些数据来评估模型来解决此问题。但是,它仍然需要人类的努力,不能自动。在本文中,我们提出了一种名为Aries的新技术,可以使用原始测试数据获得的信息估算新未标记数据的DNN的性能。我们技术背后的关键见解是,该模型在与决策边界具有相似距离的数据上应具有相似的预测准确性。我们对13种数据转换方法的技术进行了大规模评估。结果表明,我们技术的有用性是,白羊座的估计准确性仅为0.03%-2.60%(平均0.61%),从真实的准确性中差。此外,在大多数(128个)情况下,白羊座还优于最先进的选择标记方法。
translated by 谷歌翻译
本文考虑了以分布式和计算障碍方式组成的大规模网络系统的稳定区域的问题。估计一般非线性系统稳定区域的一种标准方法是首先找到该系统的Lyapunov函数,并将其吸引区域描述为稳定区域。但是,用于查找lyapunov函数的经典方法,例如平方的方法和二次近似,要么不扩展到大型系统,要么对稳定区域进行非常保守的估计。在这种情况下,我们通过利用子系统的耗散性结构来提出一种新的基于分布式学习的方法。我们的方法有两个部分:第一部分是一种分布式方法,用于学习所有子系统的存储功能(类似于Lyapunov函数),第二部分是一种分布式优化方法,可以使用该系统找到网络系统的Lyapunov功能学习子系统的存储功能。我们通过微电网网络中的广泛案例研究证明了我们提出的方法的出色表现。
translated by 谷歌翻译